Noncommutative geometry, dynamics, and ∞-adic Arakelov geometry

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non–commutative geometry, dynamics, and ∞–adic Arakelov geometry

In Arakelov theory a completion of an arithmetic surface is achieved by enlarging the group of divisors by formal linear combinations of the “closed fibers at infinity”. Manin described the dual graph of any such closed fiber in terms of an infinite tangle of bounded geodesics in a hyperbolic handlebody endowed with a Schottky uniformization. In this paper we consider arithmetic surfaces over t...

متن کامل

New perspectives in Arakelov geometry

In this paper we give a uni ed description of the archimedean and the totally split degenerate bers of an arithmetic surface, using operator algebras and Connes' theory of spectral triples in noncommutative geometry.

متن کامل

Noncommutative Geometry and Quantization

The purpose of these lectures is to survey several aspects of noncommutative geometry, with emphasis on its applicability to particle physics and quantum field theory. By now, it is a commonplace statement that spacetime at short length —or high energy— scales is not the Cartesian continuum of macroscopic experience, and that older methods of working with functions on manifolds must be rethough...

متن کامل

Noncommutative geometry and reality

We introduce the notion of real structure in our spectral geometry. This notion is motivated by Atiyah’s KR-theory and by Tomita’s involution J. It allows us to remove two unpleasant features of the “Connes-Lott” description of the standard model, namely, the use of bivector potentials and the asymmetry in the Poincare duality and in the unimodularity condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Selecta Mathematica

سال: 2004

ISSN: 1022-1824,1420-9020

DOI: 10.1007/s00029-004-0369-3